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This article deals with the problem of selecting the population most equivalent
to a control from among k independent normal populations using the parametric
empirical Bayes approach. By combining useful information from the past data, an
empirical Bayes selection procedure P∗

n is studied. It is proved that the regret of
P∗
n converges to zero at a rate O� ln n

n
�, where n is the number of past observations

at hand. A simulation study is carried out to investigate the performance of P∗
n for

small to moderate values of n.
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1. Introduction

Problems of selecting populations equivalent to a control arise frequently in many
applications. For example, in the industrial manufacturing process, suppose there
are k different methods of producing certain product. For a specific characteristic
of an item, it is required that its measurement should be in certain specification
limits (a control). Since the procedure of producing an item is complicated,
the measurement of this characteristic is thus a random variable that involves
several factors. We are mainly interested in selecting certain way of producing
so that its associated mean of the specific characteristic is the best fit to the
specification limits. For related applications, it is referred to Romano (1977) for
instance. In a toxicological study, as described by Wellek and Michaelis (1991),
such a selection problem arises in drug clinical trials and bioavailability trials.
Consider k different ways of producing drug for certain symptom and we need only
to develop one of them. From a medical study, a response of some characteristic
should reach a certain quantity (a control) so that the symptom can be removed.
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However, if the response is more than that quantity, there will be some side effect.
Under this situation we need to choose certain one from those k different ways so
that the response from body using this drug is the most close to this quantity.

In the literature, Gupta and Singh (1979) and Gupta and Hsiao (1981) proposed
Bayes, �-minimax, and minimax procedures for selecting populations close to a
control. Mee et al. (1987) developed multiple testing procedures to compare the
means of k normal populations with respect to a control. Giani and Strassburger
(1994) studied testing and selection procedures for equivalence of k populations
with respect to a control. Dunnett and Gent (1977) developed tests to establish
equivalence between treatments. Lakshminarayanan et al. (1994) studied multi-stage
test procedures for testing Blackwelder’s hypothesis of equivalence. Chen et al.
(1993) derived range tests for the dispersion of several location parameters.
Chen and Chen (1999) investigated a range test for the equivalence of means under
unequal variances. Liang (1997, 2006) derived empirical Bayes procedures for
selecting populations close to a control.

Consider k independent normal populations �1� � � � � �k, where �i has an
unknown mean �i and an unknown variance �2

i , i = 1� � � � � k. For a fixed known
control level �0, let 	i = ��i − �0�

2 denote the distance between �i and the control �0.
For a given constant 	0 > 0, �i is said to be close to the control �0 if 	i ≤ 	0, and
otherwise if 	i > 	0. Also, let 	
1� ≤ · · · ≤ 	
k� denote the ordered values of 	1� � � � � 	k.
The exact pairing between the ordered and the unordered parameters is of course
unknown. The population �i with 	i = 	
1� is called the population most close to the
control �0 if it is close to �0. It is our main interest to select the population most
close to the control. If there is no such population, we select none.

In this article, we employ the parametric empirical Bayes approach for our
problem and it is organized as follows. The framework of the selection problem
is introduced in Sec. 2. A Bayes selection procedure is derived. By mimicking the
behavior of the Bayes procedure, we propose an empirical Bayes selection procedure
P∗
n in Sec. 3. The asymptotic optimality of P∗

n is studied in Sec. 4. It is shown that
the regret of P∗

n converges to zero at a rate O� ln n
n
�, where n is the number of past

data available when the current selection problem is considered. A simulation study
is carried out to investigate the performance of P∗

n for small to moderate values
of n. The simulated results are reported in Sec. 5. A detailed proof of the asymptotic
optimality of P∗

n are provided in Appendices A and B.

2. The Selection Problem and A Bayes Selection Procedure

Let � = 
�∼ = ��1� � � � � �k�� − � < �i < �� i = 1� � � � � k� be the parameter space.

Let a∼ = �a0� a1� � � � � ak� be an action where ai = 0� 1� i = 0� 1� � � � � k, and
∑k

i=0 ai = 1.

For ai = 1 �i �= 0�, it means that �i is selected as the population closest to and
equivalent to the control �0. When a0 = 1, it means that none is equivalent to the
control and thus none is selected. We consider the following loss function:

L��∼� a∼� =
k∑

i=0

ai	i −min�	
1�� 	0�� (2.1)

Since �0 is known, without loss of generality, we let �0 = 0.
For each i = 1� � � � � k, let Xi1� � � � � Xim be a sample of size m �m ≥ 2� from �i

and let Yi denote its sample mean. For its simplicity, for given ��i� �
2
i �, let hi�yi � �i�



1692 Liang and Huang

denote the probability density function (pdf) of Yi, i.e., N��i�
�2i
m
�. We are dealing

with Bayes and empirical Bayes selection procedures regarding the parameters �∼.
It suffices to consider selection procedures based on Y∼ = �Y1� � � � � Yk�, the sufficient
statistics for �∼.

Consider that the parameter �i is a realization of a random variable �i which
has N��0� �

2
i � as its prior distribution with unknown variance �2i . The random

variables �1� � � � � �k are assumed to be independent. Thus, Yi has a marginal
N
(
�0�

�2i
m
+ �2i

)
distribution and the corresponding marginal pdf is denoted by

hi�yi�. Given Yi = yi, �i follows a posterior N
(
�1− Bi�yi� �1− Bi�

�2i
m

)
with Bi = �2i

m
/( �2i

m
+ �2i

)
.

Let � be the sample space of Y∼ . A selection procedure p
∼
= �p0� p1� � � � � pk� is a

mapping defined on � into the product space 
0� 1�k+1 such that for each y
∼
in �,

p
∼
�y
∼
� = �p0�y∼

�� � � � � pk�y∼
��, where pi�y∼

� is the probability of selecting �i as the one

closest to and equivalent to the control �0 = 0; p0�y∼
� is the probability of selecting

none, with
∑k

i=0 pi�y∼
� = 1. Under the error loss of (2.1), the Bayes risk of a selection

procedure p
∼
is accordingly,

R�p
∼
� =

∫
�

∫
�

[ k∑
i=0

pi�y∼
�	i −min�	
1�� 	0�

]
h�y

∼
� �∼�dy d���∼�

=
∫
�

[
p0�y∼

�	0 +
k∑

i=1

pi�y∼
��i�yi�

]
h�y

∼
�dy

∼
− C� (2.2)

where h�y
∼
� �∼� =

∏k
i=1 hi�yi � �i�, h�y

∼
� = ∏k

i=1 hi�yi�, ���∼� =
∏k

i=1 �i��i� where �i��i�

denotes N��0� �
2
i �, C = ∫

�
min�	
1�� 	0�d���∼�, and

�i�yi� = E
�2
i � Yi = yi� = �1− Bi�

�2
i

m
+ �1− Bi�

2y2i � (2.3)

2.1. A Bayes Selection Procedure

For each y
∼
in �, let

I�y
∼
� =

{
i ��i�yi� = min

1≤j≤k
�j�yj� and �i�yi� ≤ 	0

}
�

Define

iB ≡ iB�y∼
� =



min
j � j ∈ I�y

∼
�� if I�y

∼
� �= ��

0 if I�y
∼
� = ��

(2.4)

A Bayes selection procedure PB = �pB0
� � � � � pBk

� which minimizes the Bayes risks
R�p

∼
� among all selection procedures can be obtained as follows:
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For each y
∼
in � and i = 0� 1� � � � � k,

pBi
�y
∼
� =

{
1 if i = iB�

0 otherwise.
(2.5)

The minimum Bayes risk of this selection problem is:

R�PB� =
∫
�

[ k∑
i=1

pBi
�y
∼
��i�yi�+ pB0

�y
∼
�	0

]
h�y

∼
�dy

∼
− C� (2.6)

3. The Proposed Empirical Bayes Selection Procedures

It is noted that the Bayes selection procedure PB depends on the unknown
parameters �2i and �2

i . It is thus impossible to implement the Bayes selection
procedure PB. In the empirical Bayes framework, it is assumed that certain past
data are available when the present selection problem is considered. Let Xij�,
j = 1� � � � � m, denote a sample of size m from �i at stage �, � = 1� 2� � � � . It is
assumed that conditioning on ��i�� �

2
i �, Xij�, j = 1� � � � � m, are iid N��i�� �

2
i � and �i�

is a realization of a random variable �i�, which has N��0� �
2
i � as its prior. For each

i = 1� � � � � k, we assume that ��Xi1l� � � � � Ximl�� �i��� l = 1� � � � � n� are independent. It
is also assumed that �i�, i = 1� � � � � k, � = 1� 2� � � � are mutually independent. For
ease of notation, we consider the current stage as stage n+ 1 and denote Xij n+1

by Xij , j = 1� � � � � m, i = 1� � � � � k. Thus, Xij�, i = 1� � � � � k, j = 1� � � � � m, � = 1� � � � � n
are the past data. Denote �i = �i�n+1 as a realization of the current random variable
�i�n+1, i = 1� � � � � k and let �∼ = ��1� � � � � �k�.

For each �i, i = 1� � � � � k, and � = 1� � � � � n, denote Xi�� = 1
m

∑m
j=1 Xij�, Wi� =

1
m−1

∑m
j=1�Xij� − Xi���

2. Note that Xi�� and Wi� are mutually independent, Xi�� has

a marginal N
(
�0�

�2i
m
+ �2i

)
distribution, and �m−1�Wi�

�2i
follows a �2�m−1� distribution.

Define Si�n� = 1
n

∑n
�=1�Xi�� − �0�

2, and Wi�n� = 1
n

∑n
�=1 Wi�. Thus, Si�n� and Wi�n�

are independent, nSi�n�

�2i +�2i /m
∼ �2�n�,

�m−1�nWi�n�

�2i
∼ �2�n�m−1��. Thus, E Si�n� = �2i

m
+ �2i and

E Wi�n� = �2
i . So, we use Si�n� to estimate �2i

m
+ �2i and Wi�n� to estimate �2

i .

We may use Wi�n�/m

Si�n�
to estimate Bi = �2i

m
/
( �2i
m
+ �2i

)
. Since 0 < Bi < 1, we define

Bin = min
(
Wi�n�/m

Si�n�
� 1

)
and use Bin as an estimator of Bi. Now, mimicking the form

(2.3), we propose an estimator �in�yi� for �i�yi�, where

�in�yi� = �1− Bin�
Wi�n�

m
+ �1− Bin�

2y2i � (3.1)

Now, for each y
∼
in �, define

In�y∼
� =

{
i ��in�yi� = min

1≤j≤k
�jn�yj�� �in�yi� ≤ 	0

}
� (3.2)
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and

i∗n ≡ i∗n�y∼
� =



min In�y∼

� if In�y∼
� �= ��

0 if In�y∼
� = ��

(3.3)

We propose an empirical Bayes selection procedure P∗
n = �p∗

n0� p
∗
n1� � � � � p

∗
nk� based

on i∗n as follows:
For each y

∼
in �,

p∗
ni�y∼

� =
{
1 if i = i∗n�

0 otherwise.
(3.4)

We note that P∗
n is an empirical Bayes selection procedure based on the

past data 
Xij�, i = 1� � � � � k� j = 1� � � � � m� � = 1� � � � � n� only through W∼ �n� =
�W1�n�� � � � �Wk�n�� and S∼�n� = �S1�n�� � � � � Sk�n��. Conditioning on W∼ �n� and S∼�n�,
the conditional Bayes risk of P∗

n is

R�P∗
n �W∼ �n�� S∼�n�� =

∫
�

[ k∑
i=1

p∗
ni�y∼

��i�yi�+ p∗
n0�y∼

�	0

]
h�y

∼
�dy

∼
− C�

The (unconditional) Bayes risk of P∗
n is thus,

R�P∗
n� = EnR�P

∗
n �W∼ �n�� S∼�n��

=
∫
�

[ k∑
i=1

En
p
∗
ni�y∼

���i�yi�+ En
p
∗
n0�y∼

�	0�

]
h�y

∼
�dy

∼
− C� (3.5)

where the expectation En is taken with respect to the probability measure generated
by �W∼ �n�� S∼�n��.

4. Asymptotic Optimality

In this section, we study the asymptotic optimality of the empirical Bayes selection
procedure P∗

n . For an empirical Bayes selection procedure Pn, let R�Pn �W∼ �n�� S∼�n��
and R�Pn� denote its corresponding conditional and unconditional Bayes risks,
respectively. Since R�PB� is the minimum Bayes risk, R�Pn �W∼ �n�� S∼�n��− R�PB� ≥ 0

for all �W∼ �n�� S∼�n�� and n, therefore, R�Pn�− R�PB� ≥ 0 for all n. The non negative

difference R�Pn�− R�PB�, the regret of the selection procedure Pn, is usually used
as a measure of performance of the selection procedure Pn. An empirical Bayes
selection procedure Pn is said to be asymptotically optimal of order O��n� if R�Pn�−
R�PB� = O��n�, where 
�n� is a sequence of positive numbers decreasing to zero.

From (2.5)–(2.6) and (3.3)–(3.5), the regret of P∗
n can be expressed as

R�P∗
n�− R�PB�

=
∫
�

k∑
i=1

k∑
j=1

j �=i

P
{
i∗n�y∼

� = i� iB�y∼
� = j

}[
�i�yi�− �j�yj�

]
h�y

∼
�dy

∼
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+
∫
�

k∑
i=1

P
{
i∗n�y∼

� = i� iB�y∼
� = 0

}

�i�yi�− 	0�h�y∼

�dy
∼

+
∫
�

k∑
j=1

P
{
i∗n�y∼

� = 0� iB�y∼
� = j

}

	0 − �j�yj��h�y∼

�dy
∼
� (4.1)

Note that if �1− Bi�
�2i
m
≥ 	0, then �i�yi� ≥ 	0 for all yi. In the following

analysis, it is assumed that �1− Bi�
�2i
m
< 	0 for each i = 1� � � � � k. Let ai =√

	0 − �1− Bi�
�2i
m
/�1− Bi�. Thus, �i�yi� < 	0 if, and only if, �yi� < ai and �i�ai� = 	0,

and �i�yi� > 	0 if, and only if, �yi� > ai. Let Ai = �−ai� ai� and Ac
i = �−��−ai� ∪


ai���. Therefore, iB�y∼
� = 0 if, and only if, �yi� > ai for all i = 1� � � � � k. Hence,

by the definition of i∗n and iB, we have

∫
�
P
{
i∗n�y∼

� = i� iB�y∼
� = 0

}

�i�yi�− 	0�h�y∼

�dy
∼

≤
∫
Ac
i

P
{
�in�yi� < 	0

}

�i�yi�− 	0�hi�yi�dyi� (4.2)

and ∫
�
P
{
i∗n�y∼

� = 0� iB�y∼
� = j

}

	0 − �j�yj��h�y∼

�dy
∼

≤
∫
Aj

P
{
�jn�yj� ≥ 	0

}

	0 − �j�yj��hj�yj�dyj� (4.3)

Define Aij = 
�yi� yj� � �yj� ≤ aj� �i�yi�− �j�yj� > 0�. For �yi� yj� ∈ Aij , let t�yi� yj� ≡
��i�yi�− �j�yj��/6 > 0. Thus, for each y

∼
such that iB�y∼

� = j and �i�yi� > �j�yj�,

the related �yi� yj� must be in Aij . Hence,

P
{
i∗n�y∼

� = i� iB�y∼
� = j

} ≤ P
�in�yi�− �jn�yj� ≤ 0�

= P

�in�yi�− �jn�yj��− 
�i�yi�− �j�yj�� < −6t�yi� yj��

≤ P

�in�yi�− �i�yi�� < −3t�yi� yj��

+ P

�jn�yj�− �j�yj�� > 3t�yi� yj���

Therefore,

∫ ∫
�

P
{
i∗n�y∼

� = i� iB�y∼
� = j

}

�i�yi�− �j�yj��h�y∼

�dy
∼

≤
∫ ∫
Aij

P

�in�yi�− �i�yi�� < −3t�yi� yj��6t�yi� yj�hi�yi�hj�yj�dyidyj

+
∫ ∫
Aij

P

�jn�yj�− �j�yj�� > 3t�yi� yj��6t�yi� yj�hi�yi�hj�yj�dyidyj (4.4)
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Table 1
For 	0 = 1 under C31

n fn Dn SE�Dn�

20 0.9933 3.781E-005 8.972E-004
0.9959 1.460E-005 3.827E-004

40 0.9945 1.924E-005 4.746E-004
0.9975 6.391E-006 2.171E-004

60 0.9947 1.190E-005 2.921E-004
0.9976 5.463E-006 1.852E-004

80 0.9954 1.262E-005 3.046E-004
0.9968 3.894E-006 1.641E-004

100 0.9968 7.961E-006 2.694E-004
0.9982 1.921E-006 8.621E-005

200 0.9968 3.374E-006 9.399E-005
0.9981 1.311E-006 5.263E-005

400 0.9980 1.476E-006 4.594E-005
0.9990 7.785E-007 4.097E-005

600 0.9988 8.348E-007 3.067E-005
0.9992 3.735E-007 1.996E-005

800 0.9990 1.962E-006 8.307E-005
0.9992 2.411E-007 1.102E-005

1000 0.9990 5.809E-007 2.374E-005
0.9989 7.796E-007 4.333E-005

1500 0.9991 5.367E-007 2.924E-005
0.9994 1.052E-007 5.412E-006

2000 0.9996 2.810E-008 1.820E-006
0.9992 3.858E-007 2.762E-005

Substituting the inequalities of (4.2)–(4.4) into (4.1), we obtain

R�P∗
n�− R�PB�

≤ ∑∑
i �=j

∫∫
Aij

P

�in�yi�− �i�yi�� < −3t�yi� yj��6t�yi� yj�hi�yi�hj�yj�dyidyj

+∑∑
i �=j

∫∫
Aij

P

�jn�yj�− �j�yj�� > 3t�yi� yj��6t�yi� yj�hi�yi�hj�yj�dyidyj

+
k∑

i=1

∫
Ac
i

P
�in�yi� < 	0�
�i�yi�− 	0�hi�yi�dyi

+
k∑

j=1

∫
Aj

P
�jn�yj� ≥ 	0�
	0 − �j�yj��hj�yj�dyj

= I + II + III + IV� (4.5)

Thus, to study the asymptotic optimality of P∗
n , it suffices to investigate the

asymptotic behaviors of the four terms I� II� III , and IV� It is noted that the analysis
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of the four terms are similar, though the analysis of I and II is somewhat more
complicated than that of III and IV . We thus provide only detailed analysis and
discussion for the term of I in Appendix A. It follows then that

I = O

(
ln n
n

)
� (4.6)

Following a similar analysis and discussion as that of I , we can also obtain the
following results:

II = O

(
ln n
n

)
� (4.7)

III = O

(
1
n

)
� (4.8)

IV = O

(
1
n

)
� (4.9)

We summarize the preceding results as follows.

Table 2
For m = 30 under C32

n fn Dn SE�Dn� U�C32/C31�

20 0.9925 5.417E-005 9.930E-004 1.0008
0.9926 1.075E-004 2.703E-003

40 0.9936 3.868E-005 1.059E-003 1.0009
0.9952 3.797E-005 9.063E-004

60 0.9960 1.671E-005 3.893E-004 0.9987
0.9957 4.191E-005 1.166E-003

80 0.9966 1.338E-005 3.513E-004 0.9988
0.9964 1.543E-005 3.787E-004

100 0.9965 1.720E-005 3.861E-004 1.0003
0.9972 1.236E-005 3.714E-004

200 0.9968 1.038E-005 2.684E-004 1.0000
0.9969 8.529E-006 2.577E-004

400 0.9981 3.115E-006 1.047E-004 0.9999
0.9985 3.840E-006 2.017E-004

600 0.9988 1.514E-006 5.643E-005 1.0000
0.9992 5.023E-007 2.449E-005

800 0.9988 1.724E-006 5.214E-005 1.0002
0.9987 2.844E-006 1.327E-004

1000 0.9990 1.359E-006 5.001E-005 1.0000
0.9989 7.924E-007 3.055E-005

1500 0.9988 1.688E-006 6.934E-005 1.0003
0.9989 3.712E-006 1.725E-004

2000 0.9991 4.354E-007 2.169E-005 1.0005
0.9989 1.185E-006 6.649E-005
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Theorem 4.1. Suppose that �1− Bi�
�2i
m
< 	0 for each i = 1� � � � � k. Let P∗

n be the
empirical Bayes selection procedure constructed in Sec. 3. Then, P∗

n is asymptotically
optimal and R�P∗

n�− R�PB� = O
(
ln n
n

)
�

5. Simulation Study

In this study, we consider two cases, i.e., k = 3 and k = 5, taking �0 = 0.
For k = 3, we consider two situations of its parameters:

C31 � �
2
i = 1� �2i = i� i = 1� 2� 3

C32 � �
2
i = �2i = i� i = 1� 2� 3�

And for k = 5, we also consider two situations:

C51 � �
2
i = 1� �2i = i� i = 1� 2� 3� 4� 5

C52 � �
2
i = �2i = i� i = 1� 2� 3� 4� 5�

Table 3
For 	0 = 1 under C51

n fn Dn SE�Dn�

20 0.9894 2.483E-005 4.257E-004
0.9939 2.094E-005 5.646E-004

40 0.9936 9.591E-006 2.666E-004
0.9953 1.287E-005 4.316E-004

60 0.9946 7.470E-006 1.756E-004
0.9967 3.119E-006 8.419E-005

80 0.9941 8.197E-006 1.656E-004
0.9958 2.112E-006 4.773E-005

100 0.9945 4.131E-006 8.170E-005
0.9972 1.617E-006 4.387E-005

200 0.9964 1.875E-006 4.726E-005
0.9981 4.917E-007 1.449E-005

400 0.9966 2.531E-006 1.052E-004
0.9982 4.529E-007 1.403E-005

600 0.9973 1.287E-006 4.177E-005
0.9993 8.666E-008 3.530E-006

800 0.9979 6.933E-007 1.876E-005
0.9980 6.030E-007 1.927E-005

1000 0.9982 4.342E-007 1.203E-005
0.9995 1.173E-007 7.349E-006

1500 0.9991 1.675E-007 6.961E-006
0.9990 3.583E-007 2.322E-005

2000 0.9984 3.806E-007 1.863E-005
0.9997 5.335E-008 3.989E-006
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Table 4
For m = 30 under C52

n fn Dn SE�Dn� U�C52/C51�

20 0.9895 3.984E-005 6.990E-004 0.9998
0.9900 3.240E-005 7.349E-004

40 0.9922 1.061E-005 2.389E-004 1.0014
0.9950 1.130E-005 2.800E-004

60 0.9941 1.357E-005 3.678E-004 1.0005
0.9956 1.429E-005 4.811E-004

80 0.9927 1.102E-005 2.594E-004 1.0014
0.9947 1.215E-005 5.328E-004

100 0.9947 3.924E-006 8.562E-005 0.9997
0.9954 7.469E-006 1.926E-004

200 0.9968 5.200E-006 3.577E-004 0.9995
0.9970 2.580E-006 7.573E-005

400 0.9979 1.672E-006 6.554E-005 0.9986
0.9980 1.145E-006 6.224E-005

600 0.9976 1.507E-006 6.630E-005 0.9996
0.9989 3.289E-007 1.092E-005

800 0.9980 1.332E-006 4.983E-005 0.9998
0.9984 2.967E-007 8.792E-006

1000 0.9975 4.630E-007 1.242E-005 1.0007
0.9986 1.217E-006 5.262E-005

1500 0.9990 6.524E-007 3.588E-005 1.0001
0.9986 3.282E-007 1.066E-005

2000 0.9986 2.993E-007 1.073E-005 0.9997
0.9987 3.253E-007 1.271E-005

All simulations are repeated 10� 000 times. For stage n, we denote fn as the
frequency of correct selection, Dn its corresponding average loss and SE�Dn� the
standard deviation of Dn, where the correct selection means the event that the Bayes
rule PB selects the same population which the empirical Bayes rule P∗

n does.
In Table 1, we take 	0 = 1 under the case of C31. The upper and lower entries are

respectively associated with m = 30 and m = 50, the sample size of each population
for each stage. In Table 2, we consider m = 30, 	0 = 1 (upper entry) and 	0 = 2
(lower entry) under C32.

To see the role of �2
i in the frequency of correct selection in C31, we define

U�C32/C31� = fn�C31�/fn�C32�, where fn�C3i� denotes the frequency of correct
selection under C3i when 	0 = 1, m = 30 and �2

i = 1, for i = 1� 2� The value of U is
tabulated in the last column of Table 2.

In Table 3, we consider 	0 = 1, m = 30 (upper entry) and m = 50 (lower entry)
under C51. Values of U�C52/C51� are also tabulated for 	0 = 1 and m = 30. For
Table 4, we take m = 30 and consider 	0 = 2 (upper entry) and 	0 = 3 (lower entry)
under C52.

To give some ideas how the expected loss behaves relating to stage number
n, we define r20�n� = D20−Dn−

D20

, the percentage of the decrease of Dn with respect to
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Figure 1. Plot of r20�n� under C31.

D20with n = 20. Values of r20�n� are plotted in Figs. 1 and 2 for different values of
	0 and different configurations. For some given 	0 and configuration, to compare
r20�n� for m = 30 to that of m = 50, we consider the ratio R�n� = S30�n�

S50�n�
, S30�n� and

S50�n� are, respectively, r20�n� for m = 30 and m = 50. We plot R�n� respectively,
for two different values of 	0 under different configuration in Figs. 3 and 4. To
see the variations of expected loss with respect to sample size m for given n = 20

Figure 2. Plot of r20�n� under C51.
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Figure 3. Plot of R�n� under C31.

and n = 40, respectively, we define t5�m� = �D5 −Dm�/D5, where Dm denotes the
expected loss Dn with sample size m under some given n. t�m� are plotted in Figs. 5
and 6 for C31 and C51, respectively.

It is easy to see that the expected loss becomes stable when m ≥ 35 for both
C31 and C51 and the frequency of correct selection seems stable, though it is slowly
increasing in n, even for small n.

Figure 4. Plot of R�n� under C51.
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Figure 5. Plot of t5�m� under C31.

To see the effect of �2
i for the frequency of correct selection, we can see that

values of U�C32/C31� are stable and close to 1 for 	0 = 1 and m = 30 for both small
and large values of n. So is the case of C52 against C51.

To summarize, the expected loss depends heavily on n and also on 	0, rather
than m. It decreases steadily as n increases. However, the rate of decrease closely
relates to m and 	0.

Figure 6. Plot of t5�m� under C51.
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Appendix A

Proof of I = O� ln n
n
�. Note that I = ∑k

i=1

∑k
j=1

j �=i

Iij , where

Iij =
∫∫

Aij

P
{

�in�yi�− �i�yi�

]
< −3t�yi� yj�

}
6t�yi� yj�hi�yi�hj�yj�dyi dyj� (A.1)

By Lemma B.3 (see Appendix B), for each �yi� yj� in Aij , and noting that g1�x� ≡
x + ln�1− x� for 0 < x < 1 and g2�x� ≡ x − ln�1+ x� for x > 0,

P
�in�yi�− �i�yi� < −3t�yi� yj��

≤ exp
{
n�m− 1�

2
g1

(
mt�yi� yj�

�2
i

)}
I��2

i −mt�yi� yj��

+ exp
{−n�m− 1�

2
g2

(
mt�yi� yj�

2Bi�
2
i

)}
I��1− Bi��

2
i −mt�yi� yj��

+ exp
{
n

2
g1

(
mt�yi� yj�

2Bi�
2
i + 2mt�yi� yj�

)}
I��1− Bi��

2
i −mt�yi� yj��

+ exp
{−n�m− 1�

2
g2

(
t�yi� yj�

4Biy
2
i

)}
I�2�1− Bi�y

2
i − t�yi� yj��

+ exp
{
n

2
g1

(
t�yi� yj�

4Biy
2
i + 2t�yi� yj�

)}
I�2�1− Bi�y

2
i − t�yi� yj��� (A.2)

Let

Aij1 = 
�yi� yj� ∈ Aij � �2
i −mt�yi� yj� > 0� yi > 0� yj > 0��

Aij2 = 
�yi� yj� ∈ Aij � �1− Bi��
2
i −mt�yi� yj� > 0� yi > 0� yj > 0��

Aij3 = 
�yi� yj� ∈ Aij � 2�1− Bi�y
2
i − t�yi� yj� > 0� yi > 0� yj > 0�� (A.3)

�1�yi� yj� n� = 24 exp
{
n�m− 1�

2
g1

(
mt�yi� yj�

�2
i

)}
t�yi� yj�hi�yi�hj�yj��

�2�yi� yj� n� = 24 exp
{−n�m− 1�

2
g2

(
mt�yi� yj�

2Bi�
2
i

)}
t�yi� yj�hi�yi�hj�yj��

�3�yi� yj� n� = 24 exp
{
n

2
g1

(
mt�yi� yj�

2Bi�
2
i + 2mt�yi� yj�

)}
t�yi� yj�hi�yi�hj�yj��

�4�yi� yj� n� = 24 exp
{−n�m− 1�

2
g2

(
t�yi� yj�

4Biy
2
i

)}
t�yi� yj�hi�yi�hj�yj��

�5�yi� yj� n� = 24 exp
{
n

2
g1

(
t�yi� yj�

4Biy
2
i + 2t�yi� yj�

)}
t�yi� yj�hi�yi�hj�yj�� (A.4)

Substitute the inequality of (A.2) into (A.1). Note that �i�yi� and hj�yj� are
symmetric about �0 = 0. By this symmetry property, we obtain:

Iij ≤
∫∫

Aij1

�1�yi� yj� n�dyi dyj +
∫∫

Aij2

�2�yi� yj� n�dyi dyj +
∫∫

Aij2

�3�yi� yj� n�dyi dyj
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+
∫∫

Aij3

�4�yi� yj� n�dyi dyj +
∫∫

Aij3

�5�yi� yj� n�dyi dyj

= J1 + J2 + J3 + J4 + J5� (A.5)

Let Sij = 
yj � 0 ≤ yj ≤ aj� �i�0�− �j�yj� > 0� and

sij =


max
u∈Sij

u if Sij �= ��

0 if Sij = ��

Note that �i�yi� is increasing in yi for yi ≥ 0.
Case 1. If sij > 0, then for each yi ≥ 0� �i�yi�− �j�

sij
2 � ≥ �i�0�− �j�

sij
2 � ≡

c2 > 0.

Case 2. If sij = 0, then �i�0�− �j�0� = �1− Bi�
�2i
m
− �1− Bj�

�2j
m
≡ c3 ≤ 0�

In the following, we study the asymptotic behaviors of the five terms Ji,
i = 1� 2� 3� 4� 5.

Case 1. If sij > 0.
Let D1 =

{
�yi� yj� ∈ Aij1 � yj ≤ sij

2

}
and C1 =

{
�yi� yj� ∈ Aij1 � yj > sij

2

}
. Thus,

J1 =
∫∫

D1

�1�yi� yj� n�dyi dyj +
∫∫

C1

�1�yi� yj� n�dyi dyj = J11 + J12� (A.6)

On D1, t�yi� yj� ≥ t�0� sij
2 � = c2

6 > 0. Since g1�x� is decreasing in x for 0 < x < 1, thus,

J11 ≤
∫∫

D1

24 exp
(
n�m− 1�

2
g1

(
mc2
6�2

i

))
t�yi� yj�hi�yi�hj�yj�dyi dyj

= exp
(
n�m− 1�

2
g1

(
mc2
6�2

i

)) ∫∫
D1

24t�yi� yj�hi�yi�hj�yj�dyi dyj

≤ 4 exp
(
n�m− 1�

2
g1

(
mc2
6�2

i

))
�∗

2
� (A.7)

where the last inequality is obtained due to Lemma B.6 and where �∗2 = maxi �
2
i and

�2i = E�2
i . Note that g1�

mc2
6�2i

� ≤ −1
2 �

mc2
6�2i

�2 < 0.
Again, note that hi�yi� ≤ �0 for all yi, for some positive value �0, and i = 1� � � � � k.

OnC1,
∣∣ �t�yi�yj �

�yj

∣∣ = 2�1−Bj�
2yj

6 ≥ �1−Bj�
2sij

6 > 0. By using the preceding inequality, changing

the variable by letting x = mt�yi�yj �

�2i
and by Lemma B.4, we obtain

J12 = 24
∫∫

C1

exp
{
n�m− 1�

2
g1

(
mt�yi� yj�

�2
i

)}
mt�yi� yj�

�2
i

∣∣∣∣ �

�yj

mt�yi� yj�

�2
i

∣∣∣∣ �4
i

m2

× 3hj�yj�

�1− Bj�
2yj

hi�yi�dyi dyj

≤ 144�4
i �0

m2�1− Bj�
2sij

∫
yi

∫ 1

x=0
exp

(
n�m− 1�

2
g1�x�

)
xd xhi�yi�dyi

≤ 288�4
i �0

m2�1− Bj�
2sij

× 1
n�m− 1�

� (A.8)
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Combining (A.6)–(A.8) yields that

J1 = O

(
1
n

)
� (A.9)

Let D2 =
{
�yi� yj� ∈ Aij2 � yj < sij

2

}
and C2 =

{
�yi� yj� ∈ Aij2 � yj ≥ sij

2

}
. Thus,

J2 =
∫∫

D2

�2�yi� yj� n�dyi dyj +
∫∫

C2

�2�yi� yj� n�dyi dyj = J21 + J22� (A.10)

Note that g2�x� is increasing in x for x > 0. Thus, on D2, g2
(mt�yi�yj �

2Bi�
2
i

) ≥ g2
(mt�0�

sij
2 �

2Bi�
2
i

) =
g2
(

mc2
12Bi�

2
i

)
> 0. By a discussion similar to that of J11, we can obtain:

J21 ≤ exp
(−n�m− 1�

2
g2

(
mc2

12Bi�
2
i

))
�∗

2
� (A.11)

For the term J22, by a discussion similar to that of J12, by changing variable by
letting x = mt�yi�yj �

2Bi�
2
i

and Lemma B.5, we have

J22 = 24
∫∫

C2

exp
{−n�m− 1�

2
g2

(
mt�yi� yj�

2Bi�
2
i

)}
mt�yi� yj�

2Bi�
2
i

∣∣∣∣ �

�yj

mt�yi� yj�

2Bi�
2
i

∣∣∣∣
× 12B2

i �
4
i hj�yj�

m2�1− Bj�
2yj

hi�yi�dyj dyi

≤ 288B2
i �

4
i �0

m2�1− Bj�
2sij

∫
yi

∫ �

x=0
exp

(−n�m− 1�
2

g2�x�

)
xdxhi�yi�dyi

≤ 288B2
i �

4
i �0

m2�1− Bj�
2sij

[
2

n�m− 1�
+ 16

n2�m− 1�2

]
= O

(
1
n

)
� (A.12)

Combining (A.10)–(A.12) yields that

J2 = O

(
1
n

)
� (A.13)

J3 =
∫∫

D2

�3�yi� yj� n�dyi dyj +
∫∫

C2

�3�yi� yj� n�dyi dyj = J31 + J32� (A.14)

Note that mt�yi�yj �

2Bi�
2
i +2mt�yi�yj �

is increasing in yi and decreasing in yj for �yi� yj� in D2.

Thus, on D2,
mt�yi�yj �

2Bi�
2
i +2mt�yi�yj �

≥ mt�0�
sij
2 �

2Bi�
2
i +2mt�0�

sij
2 �

≡ c4 > 0. Therefore,

J31 ≤ exp
(
n

2
g1�c4�

)
�∗

2
� (A.15)

Let yi0 be the point such that �1− Bi��
2
i −mt�yi0� sij� = 0. By the definition

of C2, if �yi� yj� is in C2, then 0 < yi < yi0 and yj ≥ sij
2 . Thus for �yi� yj� in C2,
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mt�yi�yj �

2Bi�
2
i +2mt�yi�yj �

≥ mt�yi�yj �

2Bi�
2
i +2mt�yi0�

sij
2 �
. Therefore,

J32 ≤
∫∫

C2

24 exp
{
n

2
g1

(
mt�yi� yj�

2Bi�
2
i + 2mt�yi0�

sij
2 �

)}
t�yi� yj�hi�yi�hj�yj�dyi dyj ≡ J ∗

32�

(A.16)

Now, the form of J ∗
32 is similar to that of J12. Thus, following a discussion similar

to that of J12, we can obtain:

J32 ≤ J ∗
32 ≤

144
2Bi�
2
i + 2mt�yi0�

sij
2 ��

2�0

m2�1− Bj�
2sij

× 1
n
� (A.17)

Combining (A.14)–(A.17), it leads to

J3 = O

(
1
n

)
� (A.18)

Define D3 = 
�yi� yj� ∈ Aij3 � yj < sij
2 � and C3 = 
�yi� yj� ∈ Aij3 � yj ≥ sij

2 �. Thus,

J4 =
∫∫

D3

�4�yi� yj� n�dyi dyj +
∫∫

C3

�4�yi� yj� n�dyi dyj = J41 + J42� (A.19)

On D3,
t�yi�yj �

4Biy
2
i

≥ t�yi�
sij
2 �

4Biy
2
i

= �1−Bi�
2

24Bi
+ �i�0�−�j�

sij
2 �

24Biy
2
i

≥ �1−Bi�
2

24Bi
since �i�0�− �j�

sij
2 � > 0.

By increasing property of g2�x� for x > 0, we can obtain:

J41 ≤ exp
{−n�m− 1�

2
g2

(
�1− Bi�

2

24Bi

)}
�∗

2
� (A.20)

For J42, following a discussion similar to that of J22, we obtain:

J42 = 24
∫∫

C3

exp
{−n�m− 1�

2
g2

(
t�yi� yj�

4Biy
2
i

)}
t�yi� yj�

4Biy
2
i

∣∣∣∣ �

�yj

t�yi� yj�

4Biy
2
i

∣∣∣∣
× 48B2

i y
4
i

�1− Bj�
2yj

hi�yi�hj�yj�dyi dyj

≤ 2304B2
i

�1− Bj�
2sij

∫ �

0
exp

(−n�m− 1�
2

g2�x�

)
x dx

∫ �

−�
y4i hi�yi�dyi

≤ 2304B2
i

�1− Bj�
2sij

[
2

n�m− 1�
+ 16

n2�m− 1�2

]
M4� (A.21)

where M4 = max1≤i≤k
EY
4
i �.

Combining (A.19)–(A.21) yields that

J4 = O

(
1
n

)
� (A.22)
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On Aij3, 0 ≤ yj ≤ sij . Thus, we have: t�yi�yj �

4Biy
2
i +2t�yi�yj �

≥ t�yi�sij �

4Biy
2
i +2t�yi�sij �

=
y2i �1−Bi�

2+�i�0�−�j�sij �

y2i 
4Bi+2�1−Bi�
2�+2
�i�0�−�j�sij ��

= �1−Bi�
2

4Bi+2�1−Bi�
2 , since �i�0�− �j�sij� = 0. Since g1�x� is

decreasing in �0� 1�, therefore,

J5 =
∫∫

Aij3

24 exp
(
n

2
g1

(
t�yi� yj�

4Biy
2
i + 2t�yi� yj�

))
t�yi� yj�hi�yi�hj�yj�dyi dyj

≤
∫∫

Aij3

24 exp
(
n

2
g1

(
�1− Bi�

2

4Bi + 2�1− Bi�
2

))
t�yi� yj�hi�yi�hj�yj�dyi dyj

≤ 24 exp
{
n

2
g1

(
�1− Bi�

2

4Bi + 2�1− Bi�
2

)}
�∗

2
� (A.23)

Combining (A.5), (A.9), (A.13), (A.18), (A.22), and (A.23), we conclude that under
Case 1 that sij > 0,

Iij = O

(
1
n

)
� (A.24)

Case 2. sij = 0.
When sij = 0� �j�0�− �i�0� ≥ 0. For �yi� yj� inAij ,�i�yi� = �i�0�+ �1− Bi�

2y2i >

�j�0�+ �1− Bj�
2y2j = �j�yj�. Thus, �yi� ≥ �1−Bj�

�1−Bi�
�yj�.

Define D1�n� = 
�yi� yj� ∈ Aij1 � yj ≥ 1
n
� and C1�n� = 
�yi� yj� ∈ Aij1 � yj < 1

n
�.

Thus,

J1 =
∫∫

D1�n�
�1�yi� yj� n�dyi dyj +

∫∫
C1�n�

�1�yi� yj� n�dyi dyj = J11�n�+ J12�n�� (A.25)

On D1�n�,
�t�yi�yj �

�yi
= 2

6 �1− Bi�
2yi ≥ 1

3 �1− Bi��1− Bj�yj . Thus,

J11�n� ≤ 24
∫∫

D1�n�
exp

(
n�m− 1�

2
g1

(
mt�yi� yj�

�2
i

))
mt�yi� yj�

�2
i

∣∣∣∣ �

�yi

mt�yi� yj�

�2
i

∣∣∣∣ �4
i

m2

× 3hi�yi�hj�yj�

�1− Bi��1− Bj�yj
dyi dyj

≤ 72�4
i �

2
0

m2�1− Bi��1− Bj�

∫ aj

1
n

∫ 1

0
exp

(
n�m− 1�

2
g1�x�

)
x dx

1
yj
dyj

≤ 144�4
i �

2
0

m2�1− Bi��1− Bj�

1
n�m− 1�


ln n+ ln aj� = O

(
ln n
n

)
� (A.26)

Also, by the definition of C1�n�, we can obtain

J12�n� ≤
�0�

∗2

n
� (A.27)

Therefore, we have

J1 = O

(
ln n
n

)
� (A.28)
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Let D2�n� = 
�yi� yj� ∈ Aij2 � yj ≥ 1
n
� and C2�n� = 
�yi� yj� ∈ Aij2 � yj < 1

n
�. Thus,

J2 =
∫∫

D2�n�
�2�yi� yj� n�dyi dyj +

∫∫
C2�n�

�2�yi� yj� n�dyi dyj = J21�n�+ J22�n��

(A.29)

where

J22�n� ≤
�0�

∗2

n
� (A.30)

and by a discussion similar to that of J11�n�, we can obtain

J21�n� = O

(
ln n
n

)
� (A.31)

Therefore, we have

J2 = O

(
ln n
n

)
� (A.32)

J3 =
∫∫

D2�n�
�3�yi� yj� n�dyi dyj +

∫∫
C2�n�

�3�yi� yj� n�dyi dyj = J31�n�+ J32�n�� (A.33)

where

J32�n� ≤
�0�

∗2

n
� (A.34)

Note that for �yi� yj� in D2�n�, �1− Bi��
2
i −mt�yi� yj� > 0. Thus, �

�yi

mt�yi�yj �

2Bi�
2
i +2mt�yi�yj �

=
24mBi�

2
i �1−Bi�

2yi

12Bi�

2
i +2m��i�yi�−�j�yj ���

2 ≥ 24mBi�1−Bi��1−Bj�yj

�10Bi+2�2�2i
. By the preceding inequality and by changing

variable taking x = mt�yi�yj �

2Bi�
2
i +2mt�yi�yj �

, we can obtain:

J31�n� ≤ 24
∫ aj

1
n

∫ 1

0
exp

(
n

2
g1�x�

)
x dx

2�2
i

m
× �20�10Bi + 2�2�2

i

24mBi�1− Bi��1− Bj�yj
dyj

= 2�2
i �

2
0�10Bi + 2�2�2

i

m2Bi�1− Bi��1− Bj�
× 1

n

ln n+ ln aj�

= O

(
ln n
n

)
� (A.35)

Hence, we obtain

J3 = O

(
ln n
n

)
� (A.36)

Let D3 = 
�yi� yj� ∈ Aij3 � yi ≥ 2ai� and C3 = 
�yi� yj� ∈ Aij3 � yi < 2ai�. Thus,

J4 =
∫∫

D3

�4�yi� yj� n�dyi dyj +
∫∫

C3

�4�yi� yj� n�dyi dyj = J41 + J42� (A.37)
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Since �j�0�− �i�0� ≥ 0, on D3,
t�yi�yj �

4Biy
2
i

is increasing in yi for yi > 0. Thus, t�yi�yj �

4Biy
2
i

≥
t�2ai�yj �

16Bia
2
i

≥ t�2ai�aj�

16Bia
2
i

> 0. Also, g2�x� is increasing in x for x > 0, so, g2
( t�yi�yj �

4Biy
2
i

) ≥
g2
( t�2ai�aj�

16Bia
2
i

)
. Hence,

J41 ≤ exp
{−n�m− 1�

2
g2

(
t�2ai� aj�

16Bia
2
i

)}
�∗

2
� (A.38)

On C3, yi < 2ai. Thus,
t�yi�yj �

4Biy
2
i

≥ t�yi�yj �

16Bia
2
i

. Therefore analogous to J2, we have

J42 ≤ 24
∫∫

C3

exp
{−n�m− 1�

2
g2

(
t�yi� yj�

16Bia
2
i

)}
t�yi� yj�hi�yi�hj�yj�dyi dyj

= O

(
ln n
n

)
� (A.39)

Combining (A.37)–(A.39) yields that

J4 = O

(
ln n
n

)
(A.40)

J5 =
∫∫

D3

�5�yi� yj� n�dyi dyj +
∫∫

C3

�5�yi� yj� n�dyi dyj = J51 + J52� (A.41)

On Aij3,
t�yi�yj �

4Biy
2
i +2t�yi�yj �

is increasing in yi for yi > 0. Thus, on D3,
t�yi�yj �

4Biy
2
i +2t�yi�yj �

≥
t�2ai�yj �

16Bia
2
i +2t�2ai�yj �

≥ t�2ai�aj�

16Bia
2
i +2t�2ai�aj�

. Therefore,

J51 ≤ exp
{
n

2
g1

(
t�2ai� aj�

16Bia
2
i + 2t�2ai� aj�

)}
�∗

2
� (A.42)

On C3,
t�yi�yj �

4Biy
2
i +2t�yi�yj �

≥ t�yi�yj �

16Bia
2
i +2t�2ai�0�

. Again, analogous to J1, we can obtain

J52 ≤ 24
∫∫

C3

exp
{
n

2
g1

(
t�yi� yj�

16Bia
2
i + 2t�2ai� 0�

)}
t�yi� yj�hi�yi�hj�yj�dyi dyj

= O

(
ln n
n

)
� (A.43)

Combining the preceding results leads to

J5 = O

(
ln n
n

)
� (A.44)

Now combining (A.5), (A.28), (A.32), (A.36), (A.40), and (A.44), we conclude that
under Case 2 that sij = 0,

Iij = O

(
ln n
n

)
� (A.45)
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Finally, since there are k�k−1�
2 terms in I , each of them has order O� ln n

n
�, therefore

we conclude that I = O� ln n
n
�.

Appendix B

Lemma A.1 is cited from Liang (1997).

Lemma B.1. Let S be a �2�n� random variable. Then, the following inequalities hold.

(a) P
S
n
− 1 ≤ −c� ≤ exp
 n

2 
c + ln�1− c��� if 0 ≤ c < 1, P
S
n
− 1 ≤ −c� = 0 if c ≥ 1.

(b) P
S
n
− 1 ≥ c� ≤ exp
−n

2 
c − ln�1+ c��� for c > 0.

Corollary B.1.

(a) n�m−1�Wi�n�

�2i
∼ �2�n�m− 1��. Thus,

P

{
Wi�n�

�2
i

− 1 ≤ −c

}
≤ exp

{
n�m− 1�

2

c + ln�1− c��

}
if 0 ≤ c < 1�

= 0 if c ≥ 1�

P

{
Wi�n�

�2
i

− 1 ≥ c

}
≤ exp

{−n�m− 1�
2


c − ln�1+ c��

}
for c > 0�

(b) nSi�n�

�2i +�2i /m
∼ �2�n�. Thus,

P

{
Si�n�

�2i + �2
i /m

− 1 ≤ −c

}
≤ exp

{
n

2

c + ln�1− c��

}
if 0 ≤ c < 1�

= 0 if c ≥ 1�

P

{
Si�n�

�2i + �2
i /m

− 1 ≥ c

}
≤ exp

{−n

2

c − ln�1+ c��

}
for c > 0�

Lemma B.2.

(a) For b > 0 and Bi + b < 1,

P
Bin − Bi > b�

≤ P

{
Wi�n�

�2
i

− 1 >
b

2Bi

}
+ P

{
Si�n�

�2i + �2
i /m

− 1 <
−b

2�Bi + b�

}

≤ exp
{−n�m− 1�

2

[
b

2Bi

− ln
(
1+ b

2Bi

)]}

+ exp
{
n

2

[
b

2�Bi + b�
+ ln

(
1− b

2�Bi + b�

)]}
�

and

P
Bin − Bi > b� = 0 if Bi + b ≥ 1�
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(b) For b > 0 such that −b + Bi > 0,

P
Bin − Bi < −b�

≤ P

{
Wi�n�

�2
i

− 1 <
−b

2Bi

}
+ P

{
Si�n�

�2i + �2
i /m

− 1 >
b

2�Bi − b�

}

≤ exp
{
n�m− 1�

2

[
b

2Bi

+ ln
(
1− b

2Bi

)]}

+ exp
{−n

2

[
b

2�Bi − b�
− ln

(
1+ b

2�Bi − b�

)]}
�

and

P
Bin − Bi < −b� = 0 if Bi − b ≤ 0�

Lemma B.3. For c > 0, and �i�yi�− 3c > 0, then,

P
�in�yi�− �i�yi� < −3c�

≤ P
{
Wi�n�− �2

i < −mc
}+ P

{
Bin − Bi >

mc

�2
i

}
+ P

{
Bin − Bi >

c

2y2i

}

≤ exp
{
n�m− 1�

2

[
mc

�2
i

+ ln
(
1− mc

�2
i

)]}
I��2

i −mc�

+ exp
{−n�m− 1�

2

[
mc

2Bi�
2
i

− ln
(
1+ mc

2Bi�
2
i

)]}
I

(
1− Bi −

mc

�2
i

)

+ exp
{
n

2

[
mc

2Bi�
2
i + 2mc

+ ln
(
1− mc

2Bi�
2
i + 2mc

)]}
I

(
1− Bi −

mc

�2
i

)

+ exp
{−n�m− 1�

2

[
c

4Biy
2
i

− ln
(
1+ c

4Biy
2
i

)]}
I

(
1− Bi −

c

2y2i

)

+ exp
{
n

2

[
c

4Biy
2
i + 2c

+ ln
(
1− c

4Biy
2
i + 2c

]}
I

(
1− Bi −

c

2y2i

)
�

where I�x� = 1 if x > 0, and 0 otherwise, and P
Win�yi�− �i�yi� < −3c� = 0 if
�i�yi�− 3c ≤ 0.

For 0 < x < 1, define g1�x� = x + ln�1− x�. For x > 0, define g2�x� =
x − ln�1+ x�.

Lemma B.4.

(a) g1�x� is decreasing in �0� 1� and g1�x� ≤ −x2

2 in �0� 1�.
(b) For 0 < t < 1, and c > 0,

∫ t

0
x exp�cn�x + ln�1− x���dx =

∫ t

0
x exp�cng1�x��dx ≤ 1

nc
�
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Lemma B.5.

(a) g2�x� is increasing in x for x > 0, g2�x� ≥ x2

4 for 0 < x ≤ 1 and g2�x� ≥ x
4 + c1 for

x ≥ 1, where c1 = 3
4 − ln 2 > 0.

(b) 0 < t < 1, and c > 0,

∫ t

0
x exp�−cn�x − ln�1+ x���dx =

∫ t

0
x exp�−cng2�x��dx ≤ 2

nc
�

(c) For t > 1,

∫ t

1
x exp�−cng2�x��dx ≤ 16

n2c2
�

Lemma B.6. ∫ ∫
Aij


�i�yi�− �j�yj��hi�yi�hj�yj�dyidyj

≤
∫

�i�yi�hi�yi�dyi = E
�2
i � = �2i ≤ �∗

2
�

where �∗2 = max��21� � � � � �
2
k�.

Acknowledgment

We are grateful to a referee whose careful reading and helpful comments led to
an improvement in this presentation. This article was partially supported by grant
NSC95-2118-M-032-014 of NSC, Taiwan, Republic of China.

References

Burr, I. W. (1976). Statistical Quality Control Methods. New York: Marcel Dekker.
Chen, S.-Y., Chen, H. J. (1999). A range test for the equivalency of means under unequal

variances. Technometrics 41:250–260.
Chen, H. J., Xiong, M., Lam, K. (1993). Range test for the dispersion of several location

parameters. Journal of Statistical Planning and Inference 36:15–25.
Dunnett, C. W., Gent, M. (1977). Significant testing to establish equivalence between

treatments, with special reference to data in the form of 2× 2 tables. Biometrics 33:
593–602.

Giani, G., Strassburger, K. (1994). Testing and selecting for equivalence with respect to a
control. Journal of the American Statistical Association 89:320–329.

Gupta, S. S., Hsiao, P. (1981). On �-minimax, minimax, and Bayes procedures for selecting
populations close to a control. Sankhya B43:291–318.

Gupta, S. S., Singh, A. K. (1979). On selection rules for treatments versus control problems.
Proc. 42nd Session of the International Statistical Institute 229–232.

Lakshminarayanan, M. Y., Patel, H. I., Stager, W. J. (1994). Multistage test procedure for
testing Blackwelder’s hypothesis of equivalence. Journal of Biopharmaceutical Statistics
4:165–171.

Liang, T. (1997). Simultaneously selecting normal populations close to a control. Journal of
Statistical Planning and Inference 61:297–316.



Population Most Close to a Control 1713

Liang, T. (2006). Simultaneous inspection of variable equivalence for finite population.
Journal of Statistical Planning and Inference 136:2112–2128.

Mee, R. W., Shah, A. K., Lefante, J. J. (1987). Comparing k independent sample means with
a known standard. Journal of Quality Technology 19:75–81.

Romano, A. (1977). Applied Statistics for Science and Industry. Boston: Allyn and Bacon.
Wellek, S., Michaelis, J. (1991). Element of significance testing with equivalence problem.

Methods of Informational Medicine 30:194–198.


